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Abstract— Wildlife crop damage, particularly done by deer,
poses a risk to modern agriculture, threatening efforts to
increase sustainability and productivity. This paper proposes
a hierarchical multi-agent reinforcement learning (MARL)
framework to detect and deter deer incursions using unmanned
aerial vehicles (UAVs). At the high level, a centralized mission
planner coordinates and allocates tasks among multiple UAVs,
each tasked with monitoring a designated field sector. Each UAV
employs Multi-Agent Proximal Policy Optimization (MAPPO)
for local control, constructing flight paths, and generating
pursuit maneuvers. We reduce the computational complexity
and improve scalability by dividing the system into hierarchical
high- and low-level policies. To address the scarcity of annotated
real-world deer imagery, a photorealistic simulation environ-
ment built on Unreal Engine provides a safe and customized
testbed for training detection and control policies. Although this
work is in its early stages, the results so far show promising
progress toward solving the problem of deterring deer.

I. INTRODUCTION

Precision agriculture has become increasingly crucial in
the threat of climate change and the growing need to optimize
crop yields while minimizing environmental impacts [1].
Despite continuous improvement in mechanized processes,
wildlife incursions, particularly by deer, remain a persistent
challenge for farmers, resulting in substantial crop losses
and economic losses [2]. This becomes a difficult challenge,
especially in the North and Midwest regions, where the grow-
ing season is short. Conventional methods for monitoring and
repelling deer, such as physical fencing or manual patrols,
often lack adequate coverage and real-time responsiveness
on large farms. In addition, the high cost of conventional
methods like fencing often makes them infeasible for small-
scale farms.

Unmanned aerial vehicles (UAVs), or drones, have proven
to be an invaluable tool for the detection and deterrence
of wildlife in agriculture [3]. UAVs offer a mobile and
adaptable presence that stationary deterrents lack. When
equipped with cameras (including thermal infrared), UAVs
can autonomously scout large fields to detect and respond
to intruding deer in real-time. Research has shown that
drone-based thermal imaging can reliably spot deer hidden
in croplands [4]. Once detected, UAVs can also act as a
haze or herd animals away in a non-lethal manner [5]. Field
studies and trials indicate that drones can successfully steer
wildlife away from areas where they are not wanted. An
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example of this ability was shown for elephants, where they
were driven away from farms in conflict areas [6]. Compared
to manual patrolling or fixed scare devices, UAVs can
respond immediately to incursions and have a much larger
effective range, making them a compelling component of a
precision agriculture toolkit. They can also effectively handle
both detection and deterrence tasks simultaneously. However,
relying on a single monolithic model to handle both detection
and deterrence can limit scalability and adaptability in multi-
agent scenarios.

In response to these limitations, we propose a hierarchical
reinforcement learning (RL) framework for the efficient
detection and deterrence of deer. Using quadcopter UAVs
with onboard sensors and real-time processing, our frame-
work seeks to detect deer and perform selective deterrence
autonomously. The use of UAVs creates a system that can
easily scale to any farm size, as well as be able to quickly
adapt based on changes in the environment or landowner’s
goals. Recent advances in agent-based decision-making and
generative models for visual understanding [7] show promise
in providing robust detection and planning in complex envi-
ronments. This hierarchical framework allows for effectively
distributing tasks and reacting to events with the correct
behavior.

A. Multi-Agent and Hierarchical Approaches

In multi-agent settings, coordination between autonomous
UAVs can significantly improve coverage, reduce response
time, and improve robustness when deployed on large or
fragmented farmlands [8]. We explore a hierarchical RL
framework in which a top-level agent provides macro-level
decisions, such as task allocation and flight planning, and
bottom-level agents are responsible for local navigation
and deterrence actions. This approach allows for flexibility,
whereby the system can accommodate varied conditions,
such as unexpected deer movement patterns or varying
environments.

At the higher level, an agent coordinates and distributes
tasks among N UAVs, each to patrol and frighten deer in
different parts of the field. After receiving a path plan, each
UAV agent performs deterrence actions at a local level using
Multi-Agent Proximal Policy Optimization (MAPPO) [9].
This includes whether to deviate from a planned path when
detecting a target or to continue patrol. Logistic operations,
such as returning to a charging station if the battery is
running low, are also managed by an auxiliary subroutine.



B. Simulation and Synthetic Data Generation

As annotated datasets of deer in farmland settings are
scarce, bridging the sim-to-real gap is essential for effective
deep learning training [10]. To alleviate this data bottleneck,
we use sophisticated simulation environments, including
Unreal Engine, to generate synthetic scenarios that faithfully
mimic real-world farmland conditions and deer behavior.
The UAVs operating in these simulations collect large-scale
data for both detection (e.g., using YOLO-based object
recognition frameworks [11]) and policy learning in RL,
accelerating model development.

C. Contributions

In this work, we focus on early stage results that highlight
the viability of a hierarchical RL strategy for the detection
and deterrence of deer through cooperative UAVs. Specifi-
cally, we:

1) Develop a hierarchical RL framework that separates
high-level task allocation from low-level route ex-
ecution, enabling dynamic and efficient multi-agent
coordination.

2) Demonstrate how synthetic data from game engines
can mitigate the lack of labeled deer imagery, improv-
ing both detection and deterrence performance.

3) Integration of YOLOv5 model, fine tuned for our
usecase and measured its performance in simulation,
supporting deer detection task and downstream UAV
coordination.

II. RELATED WORK

A. Precision Agriculture and Wildlife Management

Wildlife incursion is a persistent problem in precision
agriculture, particularly for fields in proximity to natural
habitats. Several methods have been proposed for the de-
tection of animals and the deterrence of wildlife that causes
crop damage. Bapat et al. [12] demonstrated a wireless sensor
network (WSN) system utilizing passive infrared sensors and
in situ deterrents such as flashing lights and noise. It is a
modular and low-cost system. However, WSN-based systems
can be limited in coverage flexibility, remoteness feasibility
of farms, and responsiveness when the behavior of animals
is unpredictable.

Unmanned aerial vehicles (UAVs) have become more
accessible for aerial surveillance and wildlife monitoring.
Axford et al. [13] surveyed deep learning techniques for
wildlife detection in aerial imagery, highlighting key chal-
lenges such as occlusion, small object detection, and real-
time inference with small targets, dense vegetation, and small
training data. The authors identify key research gaps, such
as the need for better domain adaptation techniques and
more annotated datasets. This challenge is reflected in the
work of Crossling et al. [14], who explored deep learning
image classification pipelines using VGG16 and ResNet50
CNN architectures for the detection of five wildlife species
in farming contexts. The study highlights the importance
of training on data that reflect deployment conditions. The

very fact that clean stock photos were used led to poor
generalization in the domain.

Lyu et al. [15] developed a thermal drone-based detection
system using an enhanced Faster R-CNN model with ResNet
and pyramidal feature networks. Their method achieved high
accuracy even in partially obscured settings, demonstrating
the viability of thermal imaging for the monitoring of deer.
However, their work does not extend to active deterrence.
Bhusal et al. [16] presented a UAV-based pest bird deterrence
system that autonomously deploys drones to chase birds upon
detection. The approach shows how UAVs can act as mobile
deterrents, but is not designed for continuous monitoring or
coordination between multiple drones.

Some studies explore ground-based deterrence strategies.
Geerthik et al. [17] proposed an IoT-based detection and hu-
mane deterrence system that uses context-specific responses
(e.g., alarms and water sprays). Laguna et al. [18] evaluated
the use of portable light and ultrasonic devices to repel
red deer. Their field results indicate a measurable reduction
in deer activity; however, the effectiveness of deterrence
declined over time as the animals habituated to the stimulus
over several weeks. The study suggests that, while such
devices may be effective initially, their impact diminishes
with repeated use in a fixed location.

B. Multi-Agent Reinforcement Learning
Recent MARL algorithms have made it feasible for mul-

tiple agents, including ground robots and UAVs, to learn
coordinated policies. QMIX [19] is a value-based MARL al-
gorithm that factorizes joint value functions and significantly
outperforms previous methods in cooperative tasks. Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [20]
extends DDPG to multi-agent settings with a centralized
critic for each agent. This framework handles both coop-
erative and competitive interactions by allowing each agent
to learn a continuous policy while considering the actions of
other agents.

Multi-agent PPO (MAPPO) [9] demonstrates that a sim-
ple PPO-based algorithm achieves strong performance on
various cooperative MARL benchmarks, including Particle
World, StarCraft Multi-Agent Challenge, Google Research
Football, and Hanabi. MAPPO matched or exceeded the
performance of more complex off-policy methods in final
rewards and sample efficiency while requiring minimal hy-
perparameter tuning and no special architectural modifica-
tions.

These MARL advances are not purely theoretical; they
have also been successfully applied to real robots. For exam-
ple, MARL-based UAV swarms have been trained to cover
agricultural fields cooperatively, achieving robust coverage
with minimal overlap. Boubin et al. [21] implemented a
MARL policy on physical drones for crop scouting, which
yielded a 31% increase in profits over non-learning baselines
in field tests.

C. Hierarchical Reinforcement Learning
Hierarchical frameworks are being explored to handle

long-horizon decision making in robotics by decomposing



tasks into subtasks. A recent survey [22] outlines the evo-
lution of Hierarchical Reinforcement Learning (HRL), from
early handcrafted hierarchies to the Options framework and
goal-conditioned policies, highlighting how hierarchy can
improve sample efficiency through temporal abstraction. In
practice, HRL has enabled for more scalable robot behav-
iors. For example, Wang et al. [23] design a hierarchical
policy for multi-UAV air combat, where a high-level planner
selects maneuvers and lower-level controllers execute them.
This yielded superior win rates against non-hierarchical ap-
proaches in simulation. Likewise, hierarchical policies have
improved the navigation safety of ground robots. Zhu and
Hayashibe [24] use a two-tier RL agent consisting of a
waypoint planner and a motion controller to successfully
navigate cluttered environments with fewer collisions.

D. Synthetic Data and Sim-to-Real Transfer

Closing the reality gap is necessary for the deployment of
learning-based systems in field robots and UAV scenarios.
One such approach is to train perception models on synthetic
images produced from simulators. Guo et al. [25] follow
this path using Unreal Engine / AirSim to produce a labeled
dataset of UAV images and then test the performance of
detectors learned in such synthetic images when actually
deployed on real aerial images. These studies guide improve-
ments in object detection in precision agriculture through
more realistic and diverse simulations. On the control side,
researchers employ high-fidelity simulation and domain ran-
domization to facilitate the transfer of policies to real robots.

Kaufmann et al. [26] demonstrated a giant leap in sim-to-
real transfer by training a drone racing policy in simulation
to outperform human champions in real-world races. Their
success was based on a photorealistic simulator and the
stepwise increment of real-world effects, highlighting the
power of contemporary simulators for high-speed UAV flight.
Another research direction tackles the challenge of sim-to-
real tuning automation. Du et al. [27] developed an auto-
tuning approach that incrementally optimizes the simulator
parameters so that they better represent reality, essentially
enhancing policy transfer without a lengthy trial and error.

III. PROBLEM FORMULATION AND ENVIRONMENT
SETUP

A. Problem Formulation

We model the proposed UAV-based deer detection and
deterrence system as a multi-agent Markov Decision Process
(MMDP), formalized by the tuple (S,A1, . . . ,AN , P,R, γ),
where:

• S denotes the global state space, which includes UAV
positions, battery levels, deer detections (from onboard
vision), time of day, and current deterrence status.

• Ai is the action space of the agent i, including decisions
such as continuing along the pre-assigned path, deviat-
ing to track a deer, or activating deterrence mechanisms
(e.g., sound or lights).

• P : S × A1 × · · · × AN → S is the state transition
function determined by the joint actions of all agents
and the dynamics of the environment.

• R : S × A1 × · · · × AN → R is the global reward
function that encourages effective deer deterrence, area
coverage, and energy efficiency.

• γ ∈ [0, 1) is the discount factor.

B. Agent Observations, Actions, and Rewards

Each UAV operates as an autonomous agent with partial
observability, receiving local sensory input and onboard
detections. The observation space oi for agent i at time t
includes the UAV’s own GPS position and velocity, rela-
tive positions and velocities of nearby detected deer (from
YOLO-based detection and tracking), the battery status as
a normalized scalar (0 to 1), whether a deterrence action
was recently triggered (boolean), the distance to an assigned
patrol waypoint, and a local occupancy map representing
other nearby UAVs or obstacles (if within communication
range).

The action space Ai consists of discrete high-level deci-
sions:

• Patrol: continue following the assigned path.
• Pursue: deviate to follow and monitor a detected deer.
• Deter: activate the deterrence mechanism (e.g., sound

or light).
• Return: trigger return-to-home (RTH) behavior when

the battery is low.
The reward function rt is shaped to encourage effective

behavior and cooperation:

Rt = α1 ·Dt − α2 · Et − α3 ·Rt + α4 · Ct (1)

where:
• Dt: Deter success (e.g., distance a deer moves away

after deterrence),
• Et: Energy consumption (flight + deterrence),
• Rt: Redundancy penalty (e.g., multiple UAVs engaging

the same deer),
• Ct: Coverage gain (novel area patrolled).
The reward coefficients (α, β, δ, γ) are tuned to balance

deterrence performance with energy efficiency and coverage.

IV. HIERARCHICAL MULTI-AGENT UAV ARCHITECTURE

In this paper, we propose a hierarchical multi-agent drone
system optimized for efficient wildlife tracking and active
animal deterrence, in this instance, for deer populations
to minimize agricultural losses. The system includes three
distinct, yet interconnected levels: a High-Level Planner, a
Mid-Level Reinforcement Learning (RL) Controller, and a
Low-Level Detection and Precision Landing Controller.

A. High-Level Planning Layer

The top layer computes exhaustive area-coverage trajec-
tories algorithmically using grid-coverage methods or path-
planning coverage algorithms like Rapidly Exploring Ran-
dom Trees (RRT*) [28]. The layer gives each drone a named



Fig. 1: Hierarchical drone architecture illustrating the interactions among High-Level Planning, Mid-Level Reinforcement
Learning Controller, and Low-Level Detection and Landing functionalities.

trajectory or waypoint and optimizes spatial coverage ac-
cording to mission objectives and environmental restrictions.
It guarantees high-level mission consistency while lowering
computational overhead in the lower layers by abstracting
the global mission to a formal set of paths.

The high-level controller includes a task allocation mecha-
nism that can assign specific subtasks (e.g., surveying a sub-
region) to the individual drones, which can be done manually
with Human-in-the-loop or Algorithmically (e.g., Auction-
based [29]) where an auctioning algorithm (or another decen-
tralized coordination scheme) automatically distributes tasks
by optimizing metrics such as fuel consumption, time-to-
completion, or priority level.

B. Mid-Level Reinforcement Learning Controller
We provide a decision-making module that uses Multi-

Agent Proximal Policy Optimization (MAPPO) at the inter-
mediate level. The lower-level controller provides real-time
deer detection feedback to the RL controller, while the high-
level layer provides trajectory waypoints. These inputs and
drone conditions, such battery levels, are used to dynamically
choose drone activities. In particular, the RL controller can:

• Chasing observed deer: When deer are spotted, chase
behavior is activated to aggressively keep animals away
from important places.

• Continuing coverage: Keeping an eye out and maximiz-
ing coverage efficiency while adhering to recommended
routes when no deer are found.

• Return-to-Home (RTH): When drone battery levels get
close to critical thresholds, precision landing maneuvers
are initiated for recharging.

C. Low-Level Detection and Precision Landing Layer
The lowest layer incorporates two critical functions: ani-

mal detection and precision landing. YOLO (You Only Look
Once), a high-performance real-time object detection model,
is used to accurately identify deer from drone-acquired
imagery. Detection outcomes are relayed in real time to the
mid-level RL controller to select the preferred deterrence
method.

Additionally, this layer handles drone landing and recharg-
ing with centimeter-level precision. We achieve precise land-
ings using Real-Time Kinematic (RTK) GPS, augmented

with visual guidance through an ArUco marker-based land-
ing system. When the battery reaches a critically low level,
an RTH and autonomous landing mode are initiated from
the mid-level controller. The system utilizes RTK to posi-
tion itself above the charging station with centimeter-level
precision so that the charging station is visible and the need
to search the environment for the station is avoided. The
charging station is equipped with an ArUco marker, which
assists in the system’s ability to precisely locate the desired
landing point. A key benefit of using the ArUco markers is
that they allow us to robustly determine the position and
orientation of the drone relative to the charging station,
helping to ensure that the drone does not land in a position
that leaves it unable to charge. As the drone descends towards
the desired landing position, it updates its estimated position
based off the camera feed of the ArUco marker, enabling it
to make minuscule adjustments to perturbations that would
not have been detectable using GPS alone. This design also
helps improve performance in adverse conditions, such as in
the presence of gusty winds or temporary loss of GPS.

D. Integrated System Operation

The precision and dependability of the most recent detec-
tion and landing techniques, the adaptive decision-making
power of MAPPO-based RL, and the resilience of tradi-
tional path planning approaches are all combined in this
hierarchical system that divides tasks across layers. The
architecture facilitates smooth layer integration, guaranteeing
mission efficiency and dependability while enabling real-time
adaptation to changing environmental circumstances.

V. SYNTHETIC DATA GENERATION AND TRAINING

A. Simulation Environment

To enable high-fidelity environmental behaviors and
physics, we configured our simulation framework using
Unreal Engine 4.27.2 in conjunction with the AirSim plugin.
To enable different simulation situations, our replicated agri-
cultural setting has a variety of topography, vegetation, and
lighting conditions. Real drone action is simulated by sensor
models such as RGB cameras for vision-based perception.
The behaviors of deer, which follow a leader-follower model,
were accurately imitated. In order to ensure realistic herd



Fig. 2: A snapshot of the simulated deer herd exhibiting
diverse behaviors such as grazing, standing, and resting,
mimicking realistic wildlife dynamics for training.

Fig. 3: Top-down view of a UAV detecting and responding
to deer in the simulated farmland environment. Images show
depth, semantic, and RGB visual streams used for detection
and navigation.

movement, the lead deer moves randomly across the environ-
ment, while the following deer engage in random behaviors
like grazing and resting but always stay close to the leader.

B. Synthetic Data Generation Approach

We used a modular approach to generate synthetic farm-
land and wildlife scenarios. A master deer character was
defined with parameters that can be modified to determine the
size of the herd. Upon simulation startup, follower deer are
procedurally created from the master character, with random-
ized positions, orientations, and scales to simulate real-world
variations in a herd. Herd behaviors included roving, resting,
and feeding, plus responses to simulated threats such as the
presence of UAVs or other intrusions. Visual realism was
enhanced by attention to animation design, realistic texture,
lighting, and environmental settings such as dynamic weather
and plant variation, thus offering robust synthetic data sets
for visual detection model learning and RL policy learning.

C. Sim-to-Real Transfer Strategies

To bridge the gap between sim-to-real, we will use domain
randomization techniques such as variations in lighting, deer
spawning locations, vegetation density, and wind speed and
direction. which were systematically randomized to improve
generalizability. In addition, sensor noise and camera param-
eters were randomized to replicate real-world imperfections.
Limited real-world data collected from field trials will be
used to validate the trained model on synthetic data.

VI. EXPERIMENTAL SETUP AND PRELIMINARY
FINDINGS

A. Experimental Setup
There are three UAVs operating in designated patrol zones

on a simulated farming area of around 100 hectares were
used in the initial trials, which were conducted utilizing
the simulation system provided. In order to replicate actual
deployment settings, UAV agents were first setup with ran-
domized battery levels and beginning locations. The tests
were designed to assess UAV performance in a variety of
situations, such as:

• Environmental conditions: Environmental factors in-
clude the cycles of day and night as well as different
weather conditions like wind speed and illumination.

• Deer herd variability: At the beginning of each episode,
the herd sizes were randomly assigned and ranged from
5 to 15.

• Operational constraints: Specified battery levels that
initiate return-to-home (RTH) procedures for UAVs.

A camera-based precision landing system was used using
ArUco markers. The landing system was implemented using
a Proportional-Integral controller (PID) that interfaced with
the PX4 Autopilot software running on the Pixhawk flight
controller. The camera feed then guided the quadcopter’s
position relative to the ArUco marker and sent an updated
goal location to the PX4 Autopilot. The landing experiments
were done in Gazebo with ROS2.

To simulate the real environment, we took some ideas
about how to insert the deer into the environment and make
it to react when the drone gets close. Therefore, when the
environment starts, the deer will start at different levels at
random, including resting, feeding, and shifting. We also set
the alert threat system to the deer character that led them to
escape when they got an alert from the drone. The extension
system helps the simulation become more real since the
animal can run away from any unknown item; however, it
also enhances the challenge of detection since it requires
long-range detection from the camera, so the drone would
not need to reach the deer closely and detect them.

In the simulation, the AI Engine provided the deer model
with functionality to control the deer movement (with Inverse
Kinematics setting), resting, and gazing behaviors. Unreal
Engine provides us with Non-player character (NPC) be-
haviors, which randomize the movements or standing and
activate fast movement when the setting interface becomes
close to the deer. Otherwise, the deer will remain resting and
will not move fast.

B. Preliminary Findings
The preliminary findings thus far show the effective de-

tection capabilities of the trained UAV agents. In our custom
simulation scenarios, UAVs were able to identify deer in real-
time. The next step will be to coordinate responses to deer
incursions as proposed in the above sections.

As shown in Figure 5, the UAV was able to identify
multiple deer in our custom-built Unreal World simulation
setup.



Fig. 4: An onboard perspective capturing the UAV’s precision
landing on the gazebo.

During live simulation, the model outputted bounding
boxes with respective confidence scores. This is then further
passed through a temporal-spatial filtering. The model gave
a mean average precision (mAP @ 0.5) of 90.5% with a
precision score of 93.9% and recall of 86.9%, which confirms
a true detection within the simulation domain.

Using this detection pipeline, the UAV agents were able to
identify deer incursions in near real time. This detection will
then be used to trigger coordinated multi-agent responses.

VII. CONCLUSIONS AND FUTURE WORK

In conclusion, this work develops the use of artificial data
generation and suggests a systematic hierarchical reinforce-
ment learning approach for effective deer deterrent using
UAVs. Even though this study just started, the findings thus
far point to a potentially novel approach to achieve autonomy
in the deer detection and deterrent challenge. The near-
term next stages include iteratively improving the model’s
performance and its reliability. This is a challenging problem
that needs to be tested in the actual world. We believe
that our proposed approach is a scalable strategy to lessen
environmental damage and agricultural loss caused by deer.
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