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Abstract— Unmanned aerial vehicles (UAVs) can help miti-
gate deer-related crop damage through autonomous detection
and deterrence. However, conventional coverage path planning
algorithms often follow back-and-forth patterns that are not
optimized for the energy efficiency of specific UAV platforms.
This paper presents a coverage path planning algorithm that
utilizes Ant Colony Optimization (ACO) to generate energy-
efficient and less predictable search paths for UAV-based deer
detection. Experiments in a simulated environment representing
a small farm show that the ACO-based approach reduces energy
consumption when compared to the back-and-forth approach.
These results demonstrate that the proposed methodology can
maximize the search area of a single- or multi-UAV system
with a flight path that may be less predictable to deer or other
animal targets.

I. INTRODUCTION

Using unmanned aerial vehicles (UAVs) to detect and deter
wild animals has gained popularity due to their ability to
quickly survey an area and scare away animals by flying
towards them [1]–[3]. In this paper, we propose the use of
Ant Colony Optimization (ACO) [4] to improve the fuel
efficiency of UAV coverage path planning algorithms when
searching for wild animals such as deer. We demonstrate
that with our proposed methodology, one or multiple UAVs
can fully cover an area using an energy efficient flight path,
extending the area that a single drone can cover. We also
propose that our coverage algorithm may generate flight
paths that are harder for deer to predict and evade detection.

Our research is motivated by the damage that deer cause to
farmers’ crops during the growing season. We reached out to
farmers in Minnesota by posting to a sustainable agriculture
listserv, an email subscription system, wanting to learn about
the problems they face. From the farmers who shared their
experiences, the most common concerns they mentioned had
to do with wild animals such as deer, voles, and gophers
damaging their crops. Deer damage in particular has caused
disagreements among farmers, hunters, and the Department
of Natural Resources over how the deer population should be
controlled [5]. We hope that this research will help alleviate
the challenges farmers face and resolve issues caused by deer
on farms.

A. Contributions

The key contributions of this paper are:

*Work supported in part by the AI-CLIMATE Institute
All authors are in the Department of Computer Science

and Engineering, University of Minnesota, Minneapolis, USA.
{jerez005,duong245,swanb045,bula0023,temes021,
gini}@umn.edu)

1) A method for detecting deer on farms that can be
incorporated into a deterrence system for farmers.

2) A coverage path planning algorithm applicable for
one or more unmanned aerial vehicles (UAVs) that
maximizes energy efficiency by using Ant Colony
Optimization (ACO) with built-in obstacle avoidance.

This paper is organized as follows. Section II reviews
related work in detecting and deterring wild animals from
private property and other prior work related to our approach
to wild deer deterrence. Section III explains how the different
components of our solution work together to address the
deer problem that farmers face. Section IV describes our
proposed use of the Ant Colony Algorithm (ACO) to find
optimal solutions to the path coverage planning problem.
Section V outlines our experimental setup and how our
algorithm is applied to a real-life scenario. Section VI
presents our experimental results. Section VII concludes the
paper, discussing our findings and interpretation of results,
and outlines avenues for future research.

II. RELATED WORK

A. Deer detection and deterrence

Our research contributes to the body of work done in the
autonomous detection and deterrence of large animals, such
as deer. While substantial work has been done in autonomous
deterrence of small pests such as birds [2], [3], [6], the
autonomous detection and deterrence of larger animals has
been less thoroughly explored [7]. Important prerequisite
technologies for deer detection have been developed, such
as stationary cameras that detect deer using computer vision
techniques [8], [9] and even UAVs that autonomously detect
deer [10]. Approaches used to detect and deter birds, such as
using stationary cameras for detection, estimating their coor-
dinates, and deploying UAVs in the area for deterrence [2],
[6] could be applied to deer. However, for farmers with
medium-to-large farms, setting stationary cameras through-
out the farm to surveil its entirety may be infeasible due to
installation costs and the challenge of supplying the cameras
with constant power.

Instead, our work builds on approaches to detecting wild
animals on agricultural land using UAVs, without the aid of
ground stationary cameras. Our contribution more aligns with
existing work in deer detection that plans a coverage path
through waypoints virtually embedded throughout a field for
a UAV to follow [11]. A waypoint is a node that represents
a point in physical or simulated space. Similarly to popular
coverage path planning techniques [12]–[16], work in this



area creates paths using a back-and-forth pattern discussed
in the next subsection that steadily moves across an area. This
may not be the ideal flight path to use for deer detection and
deterrence due to its repetitive and predictable nature. As
we demonstrate in this paper, it is also not the most energy-
efficient.

B. Coverage path planning algorithms

A commonly used baseline for area coverage is the back-
and-forth coverage heuristic. The vehicle traverses the area
in a series of parallel lines, turning 90◦ at the ends. This
creates a Boustrophedon pattern. Due to its simplicity and
effectiveness in simple spaces, it has been extensively re-
searched and used.

To handle more complex environments, researchers have
proposed enhancements that build on this basic pattern.
Cellular decomposition methods, for example, divide the
environment into smaller subregions where the back-and-
forth strategy can be applied independently [17]–[19]. More
recent work has introduced additional heuristics to adapt
the algorithm complex spaces. Mu et al. [14] propose a
continuity constraint to prevent the agent from splitting
the space prematurely, a greedy strategy for turn direction
(instead of always turning back), and an A*-based module
to navigate out of confined areas. Cao et al. [20] introduces
the Improved Probabilistic Roadmap, which first generates a
set of parallel “straight paths”, then connects them using a
Traveling Salesperson Problem (TSP) [21] heuristic to ensure
full coverage while minimizing transition costs.

Despite its widespread use, the back-and-forth strategy has
notable drawbacks in dynamic and adversarial settings. One
key concern is predictability: all algorithms based on the
back-and-forth heuristic produce a characteristic pattern of
90◦ turns and repeated long parallel paths. In deer deterrence
contexts, such predictability may lead to habituation [22],
[23] and risk deer learning the drone’s pattern and adapting
their behavior to avoid being detected.

Other research in deterring pest birds from agricultural
crops accounts for habituation by using an occupancy grid
map algorithm with multiple UAVs [3]. We attempt to
prevent habituation by using a coverage path planning al-
gorithm that does not always produce the same path and
that generates less predictable flight patterns. We also use
multiple UAVs to search an area; but, instead of collabora-
tively searching the same space, we partition the area into
subsections small enough to be covered by a single UAV.

Several techniques have been used to minimize energy
consumption in coverage path planning algorithms for UAVs.
Prior work has improved energy efficiency by setting the
height of the UAV to the maximum altitude that meets
resolution criteria, strategically placing waypoints, and cre-
ating energy aware back-and-forth paths through them [24].
Other work has solved the energy efficient coverage path
planning problem as a TSP to generate a flight path [25].
Another approach has been to divide a space into sub-areas,
where the path between sub-areas is solved as a TSP with
ACO, and each subarea gets covered with a back-and-forth

algorithm [26]. A more recent approach has been to solve the
coverage path planning problem as a TSP by using ACO to
send a UAV to all regions while minimizing the total distance
covered [27]; however, the distance that a UAV travels is
not the only indicator of its energy consumption since total
rotation is also a primary contributor to a UAV’s energy
expenditure [28]. This paper combines aspects of these prior
work by using ACO to find paths that hit all waypoints
in a region while minimizing energy cost by taking into
account total distance and rotation. In order to maximize
energy efficiency and thus area coverage capabilities, our
proposed algorithm solves the Energy Efficient Coverage
Path Planning (EECPP) problem, in which a UAV must fly
through all waypoints exactly once and return to the starting
waypoint while minimizing distance traveled and degrees
rotated.

C. Ant Colony Optimization

Ant Colony Optimization (ACO) is a method used for
solving combinatorial optimization problems that was in-
spired by ants’ abilities to collaboratively find the shortest
path between their nest and a food source [29], [30]. Simi-
larly to real ants, virtual ants in ACO communicate with one
another indirectly by depositing and sensing pheromones in
the solution space. In ACO, ants find optimal solutions by
making decisions based on the heuristic values of the options
available to them and the amount of pheromones placed
on those options by ants from previous epochs. Both the
heuristic values and pheromone levels are indicators of how
favorable an option is, and ants are more likely to choose
those that seem more favorable, i.e. have higher heuristic
values and pheromone levels. Taking TSP as an example, an
ant decides which node to visit based on its distance and the
amount of pheromone that is left on the path to that waypoint.
After all ants create their own solutions, pheromone values
on the edges get updated such that better performing ants
increase the pheromones on edges that are a part of their
solution more than lower performing ants do. Over time,
edges that are a part of better solutions get higher pheromone
values, making ants more likely to traverse them. We use
ACO because it has shown to be effective at solving myriad
combinatorial optimization problems [4], including TSP [31],
which is similar to the problem that we solve in this paper.

III. SYSTEM ARCHITECTURE

As illustrated in Figure 1, we begin by plotting waypoints
over a 2D representation of a farm. Tall structures that a UAV
could collide with (visualized as orange shapes in the figure)
are included in the 2D representation. Edges (visualized
as lines) are added between all possible combinations of
waypoints to make a complete graph. An edge represents
a potential straight-line path between two waypoints that a
UAV could traverse.

In order to avoid collision with structures on the farm,
edges that would cause a UAV to collide or come close to
colliding with an obstacle are removed from the graph. This
includes edges connected to waypoints that are too close



Fig. 1. Illustration of our methodology for energy-efficient deer search.

to obstacles, which we refer to as invalid waypoints. We
then use ACO to generate an energy-efficient path through
all waypoints that returns to the starting waypoint since the
UAV is expected to begin and end at its charging station.
The 2D coordinates of the waypoints are then plotted as
3D coordinates on a farm. A UAV can then follow the path
generated by ACO while using computer vision techniques to
detect deer from some configurable height off of the ground.

IV. PATH COVERAGE PLANNING ALGORITHM

ACO is a promising tool for solving our coverage path
planning problem in an energy-efficient way due to its
high performance in solving the similar TSP [32]–[34]. We
implement both Ant System (AS) [4]–the original ACO
algorithm–and Max-Min Ant System (MMAS) [33], [34],
which has performed particularly strongly in TSP [31].

A. Implementing the ACO Algorithm

While in AS, all ants deposit pheromones onto edges they
traverse in proportion to how well they perform, in MMAS,
only the best ant deposits pheromones onto its traversed
edges [4], [33], [34]. This accelerates the performance of
ants in future iterations as it exploits the solution of the top-
performing ant. At the same time, exploration of new paths
is encouraged and premature convergence on suboptimal
tours is discouraged by limiting the pheromone level on any
edge to be no greater than a maximum pheromone level
τmax and no less than a minimum pheromone level τmin.
Formally, τmin ≤ τij ≤ τmax where τij is the pheromone
value on the undirected edge connecting node i to node j.
AS has no such bounds.

Algorithm 1 Find Energy-Efficient Path with ACO
1: Set parameters
2: Initialize pheromone values
3: for t← 1 to maximumIterations do
4: ConstructAntSolution
5: UpdatePheromones
6: end for

1) Set-up: After setting the parameters shown in Table
I, MMAS begins by initializing the pheromone values of
all edges in the graph to τmax so an edge is only favored
over another based on its local heuristic function. Normally,
when applying ACO to the traveling salesman problem, the
heuristic function of the edge connecting nodes i and j is
defined as ηij = 1

dij
where dij is the distance in meters

between nodes i and j such that 1 ≤ i ̸= j ≤ w, where w is
the number of waypoints or nodes. ηij would thus indicate
the favorability of a path, not considering the pheromone
level on the path, as each ant prefers to take a shorter path.

However, in our application, distance and pheromone
levels aren’t the only indicators of a favorable path. Ants are
also programmed to prefer the choice that requires the least
amount of rotation. Therefore, we define the local heuristic
function of choosing the edge that connects nodes i and j,
given that the ant was most recently on node h, to be

ηhij =
1

λdij + γθhij

such that h ̸= i ̸= j. As depicted in Figure 2, θhij is the
absolute value of the rotation required for a drone to go from
node h to node i to node j, measured in degrees. λ is the
energy cost for the drone to travel for one meter in a straight
line, given in kJ/m. γ is the energy cost for the drone to
rotate one degree, given in kJ/deg. The heuristic function
is therefore the inverse of the cost of flying from waypoint
i to waypoint j.

Fig. 2. Illustration of the measurements used when determining the energy
cost for a drone to fly from waypoint i to waypoint j, given that it was
previously on waypoint h. θhij is the degrees that the drone must rotate
and dij is the linear distance it would have to travel. The drone is depicted
as a blue triangle and the waypoints are orange circles.



B. Solving EECPP problem in a 2D simulated environment

Next, the optimization process begins. For every iteration
in the loop in algorithm 1, all ants construct their own
solutions and pheromones on edges are updated based on
the performance of all ants for the AS algorithm, or only
the best ant in the MMAS algorithm.

1) Construct Ant Solution: In the first iteration, each ant
k, where 1 ≤ k ≤ n and n is the total number of ants, begins
at node 1 and has a partial solution sp = {c0,1}, where c0,1 is
the solution component that represents traversing from node
0 to node 1. Node 0 is a fictitious node, indicating that the
ant’s starting node is node 1. When ant k is at node i, the
probability of going to node j is given by,

phij =


ηα
hij ·τ

β
ij∑

cil∈N(sp) η
α
hil·τ

β
il

if cij ∈ N(sp),

0 otherwise

where N(sp) is the set of feasible components, i.e., the
components cij where there exists an edge that connects
nodes i and j, and j has not yet been traversed. α and β are
constants that set the importance of the heuristic values and
pheromone values respectively. Because an ant doesn’t have
a most recent node when it is on the first node, the first step
in an ants solution construction warrants clarification. When
an ant begins at node 1, the probability of an ant to traverse
from the starting node to node j is denoted as p0,1,j . In this
case, the heuristic function η0,1,j =

1
λd1j

since θ0,1,j = 0.
2) Update Pheromones: In MMAS, after every ant k has

constructed its completed solution sk where 1 ≤ k ≤ n
the best performing ant b is selected, and its solution sb =
{c01, c1l1 , cl1l2 , ..., clw1} is used to update the pheromone
value τij of each solution component cij ∈ sb, i.e. each edge
that connects node i to node j, where i ̸= 0. The updated
pheromone value for all edges in the graph is given by,

τij ← [(1− ρ) · τij +∆τ b
ij ]

τmax
τmin

where ρ is the evaporation of the pheromone. In AS, edge
pheromone values are updated by all ants instead of just the
best ant, and the values are not bounded by τmin and τmax.
∆τkij is the pheromone that an ant k adds to cij which is
given by,

∆τkij =

{
1

λLk+γRk
if cij ∈ sp

0 otherwise

V. EXPERIMENTAL SETUP AND FIELD TESTING

As discussed in Section III, We simulate the problem in a
2D environment, solve it using the the algorithm in Section
IV, and then apply the solution to the real-life environment
with drones. Figure 3 shows the farm for which we plan a
coverage path, highlighting tall structures that the UAV path
must avoid.

Fig. 3. Birds-eye image from Google Earth of the farm that the coverage
path is designed for. The orange outer border is the boundary that the drones
must stay within. The blue shapes surround tall obstacles on the farm that
must be avoided. Blue circles surround tall trees. From left to right, the blue
rectangles outline a house and greenhouse, respectively. The orange stars
are the charging stations that the drones take off from and land on after
searching the farm for deer.

A. Solving the EECPP problem in a 2D environment

We developed a 2D simulation environment that replicates
key features of the agricultural landscape using VMAS [35].
The environment includes:

1) Waypoint Navigation: A grid of 36 waypoints is dis-
tributed across the simulated farm area, which is designed to
guide drones for complete coverage. In our implementation,
the points are 38 meters apart. The density of waypoints
should be adjusted based on the fixed altitude of the drone
during flight and the area of land that the drone is able
to scan at any moment. We set up two types of problems:
single-drone and dual-drone coverage path planning. While
the farm is small enough to be surveilled by a single drone,
we introduce the dual-drone problem as a proof of concept
that could be applied to larger farms. For the single-drone
problem, all waypoints are interconnected to achieve one
complete graph as illustrated in Figure 1. For the dual-drone
problem, the farm is divided vertically down the middle, so
that one drone is responsible for all waypoints on the left,
and the other is responsible for those on the right. After edge
generation, we are left with two disjoint complete graphs.

2) Obstacle Avoidance: As illustrated in Figure 1, col-
lision avoidance is implemented by removing edges that
intersect with or are within a safety margin of any obstacle.
This includes edges connected to invalid waypoints. This
ensures that no coverage paths are generated that could cause
a collision with obstacles included in the simulation.

3) Scaled Terrain Modeling: The simulation environment
is designed to mirror real-world farm dimensions, with
obstacles (such as a greenhouse, house, and trees) placed



according to the farms layout. As shown in Figure 4, the 2D
top-down visualization renders these components to scale.
Waypoints appear as green points, obstacles as red shaded
shapes, and drones as purple circles.

In the dual-drone problem, each drone is assigned to sepa-
rate waypoint regions to help prevent mid-mission collisions.
However this does not guarantee that the UAVs’ paths won’t
intersect, depending on where their charging stations are
located; so, we also have UAVs fly at different altitudes [6]
in the 3D implementation. The total distance traveled and
total rotation are tracked in meters and degrees respectively
so that the energy consumption of a path can be estimated
using the energy cost estimation formula from Section IV.

The proposed system addresses three critical challenges in
agricultural drone path planning: obstacle avoidance, multi-
drone task partitioning, and energy efficiency. Solving the
problem in a 2D environment serves as the foundation to
solving it in a real-world deployment.

Fig. 4. 2D simulation of the UAV coverage path planning problem for the
farm designed using VMAS [35]. The black outer border is the boundary
that the drones must stay within. The green dots are the waypoints that the
drone traverse. The red shapes are obstacles that the drones should avoid.

B. Applying 2D solution to real drones

To validate our 2D trajectory planning system in field
deployments, the waypoints obtained from the simulation test
bed are translated to georeferenced coordinates correspond-
ing to the actual locations. The waypoints derived from the
VMAS are mapped to contain the offsets and orientations,
and scaled to fit the equivalent real-world coordinates that are
uploaded into a QGround Control (QGC) [37] compatible
file. As illustrated in Fig. 6, the UAVs are commanded to
follow two distinct, closed-loop paths generated by the algo-
rithm in Section IV. Also, the interface of Mvalink allows
seamless automatic transfer of these converted waypoints to
the UAV onboard computer, i.e., the Jetson Orion platform,
thereby reducing the need for human intervention and easy
mission updates.

Fig. 5. PX4 quadcopter that will be used in the implementation of the
energy efficient coverage path planning algorithm for finding deer on the
farm. It is equipped with a camera for autonomous landing, a camera for
deer detection using a YOLO-based real-time computer vision module [36],
an NVIDIA Jetson Orin Nano for onboard inference, and a speaker and
lights for deterrence stimuli.

These field tests utilize UAVs of the PX4 6X flight
controller, which have Real-Time Kinematic (RTK) GPS,
Inertial Measurement Units (IMUs), and advanced collision
detection sensors, combined to enable their great navigation
under changing agricultural conditions. They have an on-
board platform (Jetson Orion), flight control software, and
Mavlink interface [38] to enable real-time mission deploy-
ment and adaptive operations, both of which accomplish
precise waypoint navigation as well as responsiveness to
changes in the environment.

Fig. 6. Visualization of two closed-loop paths generated with ACO that
are assigned to two UAVs. The white and pink paths are to be followed by
their respective UAVs when searching for deer, ensuring complete coverage
while avoiding obstacles.

C. Hyperparameter tuning

We used Optuna [39] for hyperparameter tuning of the
ACO algorithms described in IV to find a combination of
parameters that perform optimally in the dual-drone EECPP



problem. We configured it to maximize the sum of the
heuristic functions of the tour of drone 1 and the tour of
drone 2 over 40 trials. This is equivalent to minimizing the
energy cost of the drones. Table I provides the parameters
that were tuned, the ranges they were tuned for, and the final
values that we used.

TABLE I
PARAMETER USED FOR THE ALGORITHM.

Parameter Description Range Finalized
Tested Values

n Number of ants [10,500] 414
iter Number of epochs [10,200] 138
ρ Evaporation rate of pheromones [0.001,1 ] 0.0134
α Heuristic importance value [0.1,5.0] 3.985
β Pheromone importance value [0.1,5.0] 2.3905

τmax Maximum pheromone value [2,10] 2.027
allowed on an edge

τmin Minimum pheromone value Constant 1
allowed on an edge

λ Straight line energy cost (kJ/m) Constant 0.1164
γ Rotation energy cost (kJ/deg) Constant 0.0173

The remaining parameters–τmin, λ, and γ–were kept
constant. We kept τmin constant during the tuning process
because what matters more than the actual values of τmin

and τmax is the difference between them. This in combina-
tion with the computational resources that we saved during
the training process, influenced our decision to leave τmin

constant and to tune τmax. The values of λ and γ were set
to the values from previous literature [28] that computed
the energy costs of the maneuvers that we use in this paper
for a Pixhawk drone: moving forward in a straight line and
rotating (yaw). These values are only estimates of the energy
consumption for the specific drones that we use. Calculating
the energy consumption of maneuvering our specific drones
would make the results of our application more accurate.

D. Baseline

We use a back-and-forth algorithm as the baseline for
comparing against the ACO solutions. Our back-and-forth
algorithm closely follows the algorithm used by Cao et al.,
[20]. We first draw a number of parallel “straight paths”
through the waypoints, then repeatedly connect the two
closest segments until a TSP tour is formed. Afterwards,
we apply iterations of 2-opt until no further improvement is
possible.

VI. RESULTS

Figures 7, 8, 9, and 10 show coverage paths for the farm
in Figure 3. One waypoint is omitted in the top-left path
due to proximity to a tall tree, represented by the circular
landmark. In the dual-drone solutions (Figures 7 and 8), the
farm is vertically split down the middle with each drone
covering one side.

Table II summarizes the energy costs of the example
MMAS (Figures 9 and 7) and back-and-forth (Figures 10 and
8) coverage paths for both single- and dual-drone scenarios.
As explained in Section IV, the energy cost is given by
λ · distance + γ · rotation, where the values of λ and γ

are provided in Table I. MMAS achieves a 12.8% energy
reduction in the dual-drone case and a 4.9% reduction in
the single-drone case when compared to the back-and-forth
paths.

TABLE II
ENERGY COST COMPARISON OF MMAS AND BACK-AND-FORTH

ALGORITHMS FOR UAV COVERAGE

Scenario Method Distance (m) Rotation (◦) Energy (kJ)
Dual-drone MMAS 537.0 + 589.0 725.0 + 763.9 156.8
Dual-drone Back-and-forth 616.6 + 713.6 740.7 + 700.5 179.8
Single-drone MMAS 1179.2 1080.8 156.0
Single-drone Back-and-forth 1246.9 1131.1 164.7

Figure 11 presents a comparative analysis of mean energy
costs and performance metrics across the evaluated algo-
rithms. The AS and MMAS algorithms were run for 30 trials,
and the mean values of successful solutions–those in which
all drones involved visit all valid waypoints and return to
their charging stations–are included in the derivation of the
mean values. For the dual-drone problem, 19 out of 30 trials
of AS resulted in successful solutions, whereas 18 out of
30 trials of MMAS resulted in successful solutions. For the
single-drone problem, 28 out of 30 trials of AS resulted in
successful solutions, whereas 26 out of 30 trials of MMAS
resulted in successful solutions. One trial is included for the
back-and-forth algorithm as it inherently produces the same
solution for a given problem space.

It is worth noting that we were able to get our version
of the back-and-forth algorithm to work for the problem
space by allowing slight deviation from the straight-line path
between waypoints. This gives the back-and-forth algorithm
an advantage over the ACO algorithms when comparing their
results, as it can travel between waypoints that ACO does not
have as options.

VII. DISCUSSION AND CONCLUSIONS

The results in Figure 11 show that for both the single-
and dual-drone problems, AS and MMAS outperform the
back-and-forth algorithm in terms of energy efficiency. Even
when ACO-generated paths have more total rotation than
the back-and-forth solutions (Turns chart in Figure 11), the
ACO algorithms still generate more energy-efficient paths.
This is possible because the energy consumption of a path
is not determined solely by total rotation or distance, but
a combination of the two. The degree to which distance
and rotation effect energy consumption is dependent on
the specific UAV being used. When comparing successful
solutions of AS and MMAS, AS on average traveled slightly
less distance and rotation, and thus had slightly better fuel
efficiency.

A qualitative difference between the back-and-forth solu-
tion and the ACO solutions that we find particularly apparent
in the singe-drone coverage paths, as demonstrated in Figure
9, is that while the back-and-forth algorithm generally moves
from one side of the farm to the next, the ACO algorithm
adopts a more spiral path. The spiral flight pattern could be



Fig. 7. Example paths of two drones covering the farm using the
MMAS algorithm.

Fig. 8. Paths of two drones covering the farm using the back-and-
forth algorithm.

Fig. 9. Example path of one drone covering the farm using the
MMAS algorithm.

Fig. 10. Path of one drone covering the farm using the back-and-forth
algorithm.

Fig. 11. Comparison of results of the back-and-forth, AS, and MMAS coverage planning algorithms for both the single-drone and double-drone problems.
AS and MMAS are mean values of the valid solutions from 30 trials. For the dual-drone problem, 19 trials are included for AS and 18 are included for
MMAS. For the single-drone problem, 28 trials are included for AS and 26 are included for MMAS. One trial was conducted for back-and-forth since it
always returns the same solution.

preferable as it may be more difficult for deer to predict and avoid; however, experiments with deer need to be conducted



in order to confirm this intuition.

While AS and MMAS produced similar results when they
were valid, MMAS converged on invalid solutions slightly
more often. An invalid solution occurs when a path is unable
to return to the charging station because there are no straight-
line paths to waypoints that are untraversed. A reason why
AS may be more likely to avoid merging on invalid solutions
could be because AS explores more potential paths than
MMAS does, since all ants deposit pheromones in AS,
whereas only the best performing ant lays pheromones in
MMAS. However, more trials need to be run on different
problem spaces before we can say with certainty that AS
performs better than MMAS in UAV EECPP problems.

In conclusion, in response to the negative impacts that wild
deer have on farmers and their crops, we propose the use of
UAVs to surveil farms as part of a deer deterrence system. We
utilized ACO to generate an energy-efficient path planning
algorithm that outperforms the commonly used back-and-
forth algorithm in terms of energy efficiency so that the UAVs
can cover a larger area. Our approach accounts for farms that
are too large to be surveilled by a single UAV by partitioning
the surveillance area and assigning them to different drones
as necessary.

While our simulation results are promising, in-field perfor-
mance and deer behavioral responses remain to be evaluated.
More research is needed to determine whether deer are
less able to predict the flight patterns generated by ACO
and avoid detection while continuing to damage crops. Our
current work focuses on deer detection, but future efforts
could integrate a deterrence protocol for the UAVs to follow
after detecting deer. Such a protocol could involve using
multiple forms of deterrence stimuli, such as speakers and
lights, and should consider how to address deer habituation.

In future work1, we plan to incorporate our algorithm
into a complete autonomous UAV system using the drone
shown in Figure 5 and test its detection and deterrence
capabilities on real deer. The drone is equipped with a
speaker and lights, allowing us to experiment with different
stimuli for deterrence. To improve the accuracy of our energy
estimates, we will calculate the unit energy costs of traveling
in a straight line and rotating based on our specific drone
configuration and use these values in the ACO heuristic
function. We also plan to compare the predicted energy
cost of each path with the actual energy expenditure during
flight. Additional improvements to the algorithm may include
incorporating local search into our ACO implementation and
allowing UAVs to deviate from the straight-line path between
waypoints, as demonstrated by drone 2 in Figure 8. Finally,
we will conduct a more thorough comparison between our
algorithm and other state-of-the-art energy-efficient coverage
path planning algorithms to better evaluate the effectiveness
of our proposed system.

1Up-to-date information about our project and implementation is available
at https://ebasatemesgen.github.io/FarmGuard/
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